
QuantumAlgebra Basics
This tutorial introduces some of the basic principles how to enter Quantum objects and how to perform operations on

them.

Preparation of a Session
First one must load the QuantumAlgebra application by using the Needs command.

This loads the package

In[16]:= Needs["QuantumAlgebra`"]

This command normally - in a Mathematica front end session - loads the required context into the notebook. Addition-

ally a few commands are performed to prepare the session. This includes the definition of notations and input aliases.

You should invoke the command SetNotebookStyles[] once per Notebook. The required display styles are assigned to

the notebook.

After this is done, you are ready to input Quantum expressions and work with them.

Sets required styles in the private style sheet

In[9]:= SetNotebookStyles[]

SetNotebookStyles[] Sets the required styles for proper display of objects

Function Call to set Notebook Styles.

Provide Required Input
After the session is prepared one can input Quantum objets and work with them.

The basic Quantum objects supported by the package are Bra, Ket, BraKet, Operator.

Supported input methods are the textual fullform input and the input by using the input aliases. By providing an input

alias you can generate a 2-dimensional template where the required information is to be placed in placeholders.

Remark: Operators with indices can be entered in FullForm only.

Bra[m] Used to enter a Bra in FullForm

Ket[n] Used to enter a Ket in FullForm

BraKet[{m},{n}] Used to enter a BraKet in FullForm

Operator[H,{},{j}] Used to enter an Operator in FullForm,here with index

Operator[H,"H",{},{}] Used to enter an Hermitian Operator

FullForm of Quantum Objects.
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Input Aliases as printed out during Needs

ALIASES:
ESC op ESC - Operator without index
ESC hop ESC - Hermitian Operator without index
ESC ket ESC - Ket without index
ESC ketd ESC - Ket with subscript(s)
ESC ketu ESC - Ket with superscript(s)
ESC ketdu ESC - Ket with subscript(s) & superscript(s)
ESC bra ESC - Ket without index
ESC dbra ESC - Bra with subscript(s)
ESC ubra ESC - Bra with superscript(s)
ESC dubra ESC - Bra with subscript(s) & superscript(s)
ESC (du)braket(du) ESC - Bra with (left and / or right) subscript(s) and / or superscript(s).

Sample FullForm input - an Operator and a Ket

OperatorV, i, {}

V

i

Ketm, i, {}

mi

Sample input with input alias - unfilled templates: a Bra and a BraKet





   



Sample input with input alias - with information filled in

k
n

k
n

i m n j

i m n j

A Few Simple Calculations
This section demonstrates in a few simple samples, how calculations can be done in QuantumAlgebra.

Orthonormalized BraKet Sample

The  first  sample  demonstrates,  how  a  BraKet  can  be  assigned  a  function  to  calculate  its  value  and  what  the  result

multiplying a Bra and a Ket then is.

CenterDot Used to multiply Bra and Ket (Alias: ESC . ESC)

Multiplication Operator to concatenate Bras, Kets and (optionally) Operators.

Definition and Usage of BraKets

In[31]:= (* Orthonormalized BraKet *)

i_ m_ n_ j_ := KroneckerDeltai, j KroneckerDelta[m, n]

In[32]:= (* Equal indices and labels yield 1 *)

1n · n1

Out[32]= 1
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In[33]:= j2 · 2j

Out[33]= 1

In[34]:= (* Else yields 0 *)

2n · n3

Out[34]= 0

In[35]:= 35 · 43

Out[35]= 0

In[36]:= (* Different symbols - Mathematica cannot make assertions about equality *)

jk · lj

Out[36]= KroneckerDelta[k, l]

The Harmonic Oscillator Sample

The Quantum Mechanical  Oscillator  is  one  of  the  most  important  yet  simple  systems in  Quantum Theory.  We try  to

demonstrate the application of Quantum Algebra to analyze and calculate this system.

First we define a simplification function, which can be used as appropriate.

QASet Defines the given rule and derived rules.

QACommutatorExpand Replaces Commutators by their definition.

QAExpandAll Combines some expand functions of QA.

A few functions used in this example.

A simplification function making assumptions

In[3]:= FullSimplifyAss[exp_] := FullSimplifyexp, Assumptions → m > 0 && ℏ > 0 && ω > 0 // Expand // PowerExpand

Next  we  define  the  Quantum  Mechanical  Oscillator  by  introducing  its  Hamiltonian.  Then  we  define  the  important

Commutation relation for Location and Momentum Operators. Finally we define the Location and Momentum Operators

as Hermitian.

Hamiltonian, Commutation Relations and Hermitian

In[4]:= (* Hamilton Operator defined in terms of Location and Momentum Operator *)

In[5]:= H

= 1/2/m p


^2 + m ω^2/2 x


^2

Out[5]=
p
2

2 m
+
1
2
m ω2 x

2

In[6]:= (* Defines the Commutation Relation between Location and Momentum *)

In[7]:= QASetx

, p


-
= ⅈ ℏ 1




In[8]:= (* Location Operator x


is Hermitian *)

In[9]:= x
†

= x


Out[9]= x


In[10]:= (* The same yields true for the Momentum Operator p


*)

In[11]:= p
†

= p


Out[11]= p


Next we introduce a few rules. They are all based on the definition of the so called Creation Operator and its counter

part - the Annihilation Operator. Whereas Rule 1 can substitute Annihilation and Creation Operators by Location and

Printed from the Complete Wolfram Language Documentation 3

©1988–2016 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



Momentum, Rule 2 can do the opposite. Rules 3 and 4 are rules derived from Commutator definition for the Annihila-

tion and Creation Operators. Rules 5 and 6 introduce the so called Number Operator N

. 

Definition of required rules

In[14]:= (* We define rules where a Commutator definition is
solved after one of the both products of the contributing Operators *)

In[15]:= commutatorRules[op1_Operator, op2_Operator] :=
Module{commutator = [op1, op2]-, rule1, rule2},
rule1 = Solve[commutator ⩵ (commutator // QACommutatorExpand), op1·op2];
rule2 = Solve[commutator ⩵ (commutator // QACommutatorExpand), op2·op1];
Join[rule1[[1]], rule2[[1]]]



In[16]:= (* From our start rule we derive a second rule by Hermitian operation and unify them in a List *)

In[17]:= rule1 = rule, MapHermitian[#] &, rule // FullSimplifyAss

Out[17]= a
†

→ -
ⅈ p


2 m ω ℏ
+

m ω x


2 ℏ
, a

→

ⅈ p


2 m ω ℏ
+

m ω x


2 ℏ


In[18]:= (* Rule 2 solves the rules in Rule 1 after Location and Momentum operators *)

In[19]:= rule2 = Solverule1 /. Rule → Equal, x

, p

[[1]] // FullSimplifyAss

Out[19]= x

→

ℏ a


2 m ω
+

ℏ a
†

2 m ω
, p

→ -

ⅈ m ω ℏ a


2
+

ⅈ m ω ℏ a
†

2


In[20]:= (* From the commutatorRules derives rules for Creation and Annihilation Operator *)

In[21]:= rule3 = commutatorRulesa

, a
†

[[1]]

Out[21]= a

·a
†

→ a

, a
†


-
+ a
†

·a


In[22]:= rule4 = commutatorRulesa

, a
†

[[2]]

Out[22]= a
†

·a

→ -a


, a
†


-
+ a

·a
†

In[23]:= rule5 = N

→ a
†

·a


Out[23]= N

→ a
†

·a


In[24]:= rule6 = a
†

·a

→ N


Out[24]= a
†

·a

→ N


Rule 7 derives a Commutator rule for the Annihilation and Creation Operators.

After this the Hamiltonian is simplified using both Operator definitions.

And finally a Eigenvalue - Eigenket - Relation is adopted for the Number Operator.

Commutator rule for the Annihilation and Creation Operators

In[25]:= rule7 = a

, a
†


-
→ a


, a
†


-
/. rule1 // QACommutatorExpand

Out[25]= a

, a
†


-
→ 1


Simplified Hamiltonian

In[26]:= H

/. rule2 // QAPowerExpand // FullSimplifyAss /. rule3 /. rule7 // QAExpandAll

Out[26]= ω ℏ a
†

·a

+
1
2
ω ℏ 1



Eigenvalue - Eigenket - Relation for the Number Operator

In[28]:= QASetN

· n_ = n n
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Finally we derive the meaning of the Annihilation and Creation Operators, respectively.

It  becomes  apparent  that  Annihilation  /  Creation  Operator,  applied  to  an  Eigenket  of  N


 give  a  new  Eigenket  with

Eigenvalue decreased / increased by one. It also justifies the term Number Operator for N

.

With this demonstration we conclude this little sample.

Meaning of Annihilation and Creation Operators

In[29]:= N

·a
†

· n /. rule5 /. rule3 /. rule6 /. rule7

Out[29]= a
†

· n + n a
†

· n

In[30]:= N

·a

· n /. rule5 /. rule4 /. rule6 /. rule7

Out[30]= -a

· n + n a


· n

MORE ABOUT

◼ SetNotebookStyles

◼ Bra . Ket . BraKet . Operator

RELATED TUTORIALS

◼ Advanced Concepts
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